Autophagy and Cellular Senescence Mediated by Sox2 Suppress Malignancy of Cancer Cells

نویسندگان

  • Yong-Yeon Cho
  • Dong Joon Kim
  • Hye Suk Lee
  • Chul-Ho Jeong
  • Eun-Jin Cho
  • Myong-Ok Kim
  • Sanguine Byun
  • Kun-Yeong Lee
  • Ke Yao
  • Andria Carper
  • Alyssa Langfald
  • Ann M. Bode
  • Zigang Dong
چکیده

Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a), p21 and phosphorylated p53 (Ser15). Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOX2OT, a long non-coding RNA involved in autophagy regulation

Summary: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to ...

متن کامل

MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats

Objective(s): Recent studies revealed that microRNAs (miRNAs) may play crucial roles in the responses and pathologic processes of spinal cord injury (SCI). This study aimed to investigate the effect and the molecular basis of miR-103 on LPS-induced injuries in PC12 cells in vitro and SCI rats in vivo. Materials and Methods: PC12 cells were exposed to LPS to induce cell injuries to mimic the in ...

متن کامل

Looking for immortality: Review of phytotherapy for stem cell senescence

Objective(s): In this paper, we discussed natural agents with protective effects against stem cell senescence. Different complications have been observed due to stem cell senescence and the most important of them is “Aging”. Senescent cells have not normal function and their secretary inflammatory factors induce chronic inflammation in body which causes different patho...

متن کامل

Role of MicroRNAs in BCG Therapy by the Induction of Neutrophil Extracellular Traps in Bladder Cancer

The treatment of bladder cancer is usually performed by Bacillus Calmette-Guerin (BCG) instillation. BCG therapy is a common therapeutic method with fewer side effects compared with chemotherapy, radiotherapy, etc. BCG can also inhibit the progression and recurrence of bladder cancer by inducing apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formatio...

متن کامل

Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot

When mammalian cells and animals face a variety of internal or external stresses, they need to make homeostatic changes so as to cope with various stresses. To this end, mammalian cells are equipped with two critical stress responses, autophagy and cellular senescence. Autophagy and cellular senescence share a number of stimuli including telomere shortening, DNA damage, oncogenic stress and oxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013